PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Shell structures with “magic numbers” of spheres in a swirled dish
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Molecular dynamic simulations of a low numbi<54 of spheres in a swirled dish yield solidlike shell
structures with stable rings. In contrast to known granular media, solidification occurs only at singular values
of N: 7, 8, 12, 14, 19, 21, 30, 37, 40. Otherwise, we obtain intermittent switching of particles between rings —
the average switching time scaling exponentially with a control parameter — or fluidlike disorder. Stable shell
structures can be classified by particular geometrical arrangenf@mscentered hexagonal, one-centered
“quasicircular,” three centered, and four centerg$1063-651X99)08112-X]

PACS numbd(s): 68.35.Rh, 02.70.Ns, 47.54r

[. INTRODUCTION for AN=+1; (iv) one can deal with situations occuring in
real biological systems, as, for example, spherical algae cells
Increasing attention is being paid to the ubiquitous bu{4<N=128), swarming and aggregating within a vesicle
poorly understood granular materialdor reviews, see [14]. ForNin this small range, simulations of the following
[1-3]). Technical knowledge about them is important for theSystems have been reported: Beads in one dimensional
control of mixing, unmixing, release from storage, and trans{1D) vibrating columns [15]; and (i) disks in two-
port of goods ranging from powders and pills to cereals andlimensional2D) swirled dishes displaying a transition from
gravel. Also, they are relevant to geological processes angptation in swirling direction to a “reptation” in the opposite
astrophysic$3]. Furthermore, they are a challenge to physi-direction[16].
cists since ordinary hydrodynamics and thermodynamics do
not work because of inelastic collisions and the failure of the
ergodic hypothesigésee[4] and references therginA num- Il. METHODS
ber of unique phenomena occuring in granular materials
have been reported; examples are localized states in ver?’rons of N spheres with radiir,=5 mm and densityp

cally vibrated layer$5], finger patterns in flowgs], and size _3 S . . >
segregatiori7,8]. While some authors regard granular media—2-> 9¢m °. A particle i is described by its position;,

as an additional state of matter in its own right, others regard€locity v;, and angular velocity»; . The particles are roll-

it as a hybrid state of liquid, solid, and gas. A fruitful attitude ing on a cylindrical, horizontal disfradiusR). We describe
has been to consider solid-fluid-like transitiof-11] or  the system by the dimensionless dish coverlagé\lrf,/Rz;
stagnant solidlike zones in liquid environmef®12,13. In  the maximum value ob is given by the condition that we
the present work, we shall also consider analogies to fluidnly consider setups in which each particle has contact with
and solid phases, including intermediate states. the bottom of the dish. The dish is swirled in the horizontal

In order to explore the variety of behavior of particles in aplane such that each point in it has the velocity
swirled dish, we did computer simulations by using molecu{ — Aw sin(wt),Aw cost),0]; if not stated otherwise, we con-
lar dynamics. In the literature, reasonable computer timesjder A=2r, and f=w/27=2 Hz. Two particlesi and j

and mechanistic simplifications permit us to consider a numonly interact if the distance between their center of mass
berN of par'glcles up to 16-1C. In our work! however, we |Fi_Fj| is smaller than ,, the overlap beingﬁ::er—lﬂ
shall deal with a very small number of particlessbi<54. - . () .

Such numbers are attractive for the following reasdins: rJ'|' The repu_Iswe ”OfT“a'_fOFCEn. is given by the Hertz
Mechanistic simplifications at largd for coping with com- theory with a viscoelastic dissipatida7],
putational limitations can be avoide(;) there is no need for

assuming a smalleX than in experiments(iii) one can ex-

In this work we perform three-dimension@D) simula-

. . v (1) 1y 732 v —vnln
plore the sensitive dependencelgni.e., significant changes Fa'=[Y¢ Tn \/Z(V. vpn]n, @
*Electronic address: koetter@mpi-dortmund.mpg.de with n’=(ri_rj)/_|rl}2_£12|- We set the particle stiffness %
"Electronic address: egoles@dim.uchile.cl =1.0x10° kgm Y2572 and the damping constant tg,

*Electronic address: markus@mpi-dortmund.mpg.de =30.0 kgni Y2571, The shear force, perpendiculariiois
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FIG. 1. Snapshots of dynamical modes taken every: 10f 1
(f~*: swirling periog for varying particle numberl and dish cov-
eraged; the dish is at 3 o’clock of its counterclockwise, horizontal
swirling motion (seen from aboJye Some particles are marked
black to visualize their displacements) Shell structure with stable
rings N=21b=0.6). (b) Transition mode in which particles are
occasionally exchanged between ring$=(215p=0.5). (c) Disor-
dered mode foN=21, b=0.45.(d) Disordered mode foN=23,
b=0.6.
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FIG. 2. System behavior depending on the dish covebaged

the number of particleBl. The white region indicates disordétu-
idlike phase or the transition mode. The dark region above indi-
cates the solidlike phase. The particularly long dark columns indi-
cate the formation of stable rings at the “magid\¥. Evaluation
time: 40f 1 (f~1: swirling period. The upper and lower dashed
straight lines correspond to constant dish rai6r, and R
=8r,, respectively (,: particle radiug The driving amplitudeA
and frequencyf of the swirling motion is varied(a) A=2r, f

=2 Hz, (b A=4r,, f=1 Hz, and(c) A=1r,, f=1 Hz.

dered configurationgfluidlike mode. Solidification occurs
here [compare Figs. (), 1(b), and 1c)] by increasingb.
This is comparable to the well-known solidification for par-

The first term describes the Coulomb sliding friction and theticle densities above a critical dilatanf$,13]. However, we

second term a viscous friction. The shear velocit);gs \7i
—V;—[(vi—vjnIn+r,nx (w;+ ;) and the parameters are
set toys=20.0 kgs ! andu.=0.45. Equationgl) and(2)

obtain here the novelty that solidification only occurs at very
particular values oN, which we call “magic numbers.” The
ring structure in Fig. (@ indicates thatN=21 is such a

are in good agreement with experimental observatjdgg ~ nhumber, whileN=23[Fig. 1(d), for whichb is the same as
The interaction of particlé with the boundariegbottom and  in Fig. 1(@] is not. In fact, if during calculations we add one
wall) of the dish were computed by assuming a particleparticle in Fig. 1a), the rings are rapidly destroyed; if we
placed symmetrically té with respect to this boundary. In take away two particles in Fig(d), rapid solidification into
addition the rolling friction is modeled by stable rings occurs. An overview of ring confinement versus
disorder, for varyingb and N, is given in Fig. 2a). The
lower, white region corresponds to disorder, while the upper,
dark region corresponds to stable behavior. This dark region
is connected to dark vertical bars, which are patrticularly long
with 4, =3.0x10°5 m:; gravity is acting along the negative for N=7,8,12,14,19,21,30,37,4¢"magic numbers’). In
z axis. The differential equations are solved by a Gearfig. 3 we show the “frozen” ring structures corresponding
predictor-corrector algorithrfil9] of sixth order with a time  t0 these numbers. Experiments with this setup have already
step of 5x107° s. This model with these parameters wasbeen performed and confirmed solidification into these struc-
optimized by fitting simulations of probability distributions, tures[21].
rotation frequency, and mean kinetic energy of clusters of For nonmagid in the dark region of Fig. 2, solidification
spheres in a dish, all as functions Nf as well as single is forced by a lack of space and is not characterized by ring
Sphere trajectories to experiments performed using the SetLﬁ‘srUCtUreS. This additional, trivial static mode is to be con-
in Ref.[16], as will be published elsewhefa0]. trasted with the three dynamical modes described above. The
ordinate of Fig. 2 ends at random loose-packiRgP) struc-
tures, for whichb= 72/12~0.822[1]. The two curves delim-
iting different shadings in the upper dark region of Fig. 2
The dish is swirled counterclockwise. Therefore and be-correspond to a RLP structure with a “hole” that could ac-
cause of its inertia the cluster is more or less unrolling at theomodate one particleipper curve or two particles(lower
wall of the dish[16,2(Q; its center of mass is moving circu- curve; these curves can be considered to indicate “precur-
larly in the dish with the same frequency as the externakors” of the fluid state and thus help to a qualitative under-
driving. We will focus here on the dynamics of the particlesstanding of the shape of the solidification boundéatgrk-
inside the cluster. We obtained three different dynamicalvhite transition for nonmagicN.
modes, which are exemplified in Fig. @@ Confinement of As shown in Fig. 3, the stable configurations can be clas-
particles in ringgsolidlike mode; (b) formation of rings that  sified into four “types”: (I) One-centered hexagonal struc-
exchange particle@transition modg and (c) and (d) disor-  ture,N=1+2(6i); (Il) one-centered “quasicircular” struc-
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Order n 1 2 3 a)

7=1+6 19=146+12 37=146+12418
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FIG. 3. “Periodic table” of stable shell structures. The order FIG. 4. Time series of the position of a single particle within the

(changing horizontallyis the number of rings around the center. intermittent transition mode dfi=21 particles. We plotted the.dis-
The “type” (changing vertically is related to the arrangement of tance from the center of mass of the clugiarunits of the particle

particles:(l) one-centerd nearly hexagond) one-centered “qua-  fadiusry) r:lveragjgd over one swirling peri§61 vs the dimension-
sicircular”; (Ill) three centered, andlV) four centered. The €SS timet’=10"" ft. The dish coveragé is changed froma) b
“magic” numbers of particles are given in bold type. The dish =0.51 to(b) b=0.44.

coverage i9=0.6 forn=1 or 2 andb=0.63 forn=3.
being kept constant; disorder occurs above and below a sin-

gular value ofN (N=21 for the upper straight line and
=40 for the lower ongat which the system “freezes” into
rings. We found the “magic numbers” and their ring struc-
. . ) . tures to be robust to changes of the driving amplitAdend
No stable ring structure is found far=2 in type Il (i.e., frequencyf in the following rangesr ,<A<4r,, 0.5 Hz
N=27 is not “magic”), forn=3 in type IV and fom=4in <, ", [compare, for example F’ijgs(Iﬂ an?J’Zc) with
types | and Il. Stable configurations can only persist if theFig. 2a)]. The upper boundaries 01,‘ the rangesicind are

particles have a vanishing speed relative to each other. Th@ven by the fact that the spheres attain enough energy to

moving wall tends to destroy stable shell structures by accell;nove above each other for largrandf. The lower bound-

.erating. the particles; the damping of the resultipg VeIOCitieSaries are given by the technical constraint that computing
IS max'm'ZEd by a large number of contact points be_:twe_eqime limits are surpassed as the system slows down for
particles. On the other hand, the cylindrical dish and its cir-,

I i ton i oul lust i smallerA andf.
cular swirling motion IMpose circular cluster geometries. Figure 4 shows a time series of the intermittent position of
These two conditions — large number of interparticle con-

tacts and circular motion — are optimally approximated in

ture, N=1+3(6i+1); (lll) three particles in the cente
=3+2(6i+3); and(IV) four particles in the centeN=4
+3(6i+4); (all sums are carried out from= 1 throughn).

the stable shell structures. The sum formulas given above foa)4 b)4

types I, lll, and IV are obtained by starting with one, three, ] ' I 10 N

or four center particles, respectively, and adding further par- [ ] [ :
ticles in an hexagonal configuration around the center until10% =, 7 10°% D‘\uﬂ E
the rings are closed. The sum formula for type Il is obtainedt E\D ; i :
as for type |, but with a dislocation line passin_g_ nearby_ the 42 D 1 102l u\ﬁ ]
center. Note that the actual structures exemplified in Fig. 3 e : W E
can be understood as resulting from slight perturbations of "y : ] g
these geometric constructions, owing to the circular motion. 10" LN 10k R
For the four types, an increasing number of subsequent ring: e ] 3 m :
leads to increasing edge lengths of the constructed geomqg® 053 . 3100 54 ‘«03

etries and thus to an increasing deviation from the externally (Ob' _b)/bo'03
imposed circular geometry; in that case, perturbations of the © ¢
geometrical structures are so large that the rings are de- F|G. 5. The average time a particle remains in one figided
stroyed. by the swirling periodf 1) vs the relative distance df from b,

The scenario along the dashed, straight lines in Fig. 2 (b, : critical value of the dish coverageat which the stable shell
can be easily obtained in experimeh®i] and occurs at an structure breaks down into the transition mpdehe total number
increasing number of spheres in the dish, all other parametets particles is(a) N=8 and(b) N=21.
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a single particle within the cluster as the particle changes Crisis-induced intermittency in our case would mean that
rings in the transition modksee, e.g., Fig.(b)]. In Fig. 4@  the fluctuations of the particles within each rinbigh-

we see the transient lockings of the particle into each of thérequency oscillations in Fig.)4are described by chaotic
three rings forN=21, switching between the rings, as well attractors. The crisis would consist of a merging of the at-
as disordered, high frequency oscillations within each ringtractors corresponding to neighboring rings, such that both
In Fig. 4b), the dish coveragé is farther away from the attractors touch the boundary of their basisee[23] and
critical value b, at which solidification occurs, so that references therejnIn addition, it cannot be excluded that
switching occurs more frequently. The average timee-  chaotic attractors correponding to the motion in the rings are
tween switchings as a function fi§—b.|/b, (Fig. 5 shows defined on a manifoldv that has a smaller dimension than
a dependencex|b—b.|~7 with y=3.25+0.07, b,=0.45 the phase space of the whole system. In that case, switching
+0.02 forN=8, andy=4.01+0.13, b,=0.56+0.02 forN may occur via excursions outsidd, as described in Ref.
=21. Since for an exact determinationknf one would have [24]. The intermittency transitions found in this work are to
to determine the solidification transition for>c, we deter- be contrasted with granular fluid—solidlike transitions occur-
mined b, and y in Fig. 5 by nonlinear optimization. The ing via period-doubling bifurcations as reported in R¢ig)]
well-known scaling exponents for intermittency aye=1/2  and[25].

or 1[22]. The much larger exponents found here could be an

indication of crisis mduced_ mtermlttency. In fact, |F has t_)een ACKNOWLEDGMENTS
shown that for such an intermittency, higher-dimensional
situations lead to enhanced valuesgffor D-dimensional We thank Gladys Cavallone for her dedication to arrange

maps, D—1)/2<y<(D+1)/2[23]. Such an inequality is a fruitful stay of K. K. and M. M. in Chile, as well as the
not known for continous systems; however, we do find aDeutsche Forschungsgemeinsch@tants MA 629/4 and
decrease fory for decreasing numbers of degrees of free-FONDAP program in Particle Systen(€hile) for financial

dom, as exemplified by the analyses of Figg)and 3b). support.
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