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Shell structures with ‘‘magic numbers’’ of spheres in a swirled dish
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Molecular dynamic simulations of a low numberN<54 of spheres in a swirled dish yield solidlike shell
structures with stable rings. In contrast to known granular media, solidification occurs only at singular values
of N: 7, 8, 12, 14, 19, 21, 30, 37, 40. Otherwise, we obtain intermittent switching of particles between rings —
the average switching time scaling exponentially with a control parameter — or fluidlike disorder. Stable shell
structures can be classified by particular geometrical arrangements~one-centered hexagonal, one-centered
‘‘quasicircular,’’ three centered, and four centered!. @S1063-651X~99!08112-X#

PACS number~s!: 68.35.Rh, 02.70.Ns, 47.54.1r
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I. INTRODUCTION

Increasing attention is being paid to the ubiquitous
poorly understood granular materials~for reviews, see
@1–3#!. Technical knowledge about them is important for t
control of mixing, unmixing, release from storage, and tra
port of goods ranging from powders and pills to cereals a
gravel. Also, they are relevant to geological processes
astrophysics@3#. Furthermore, they are a challenge to phy
cists since ordinary hydrodynamics and thermodynamics
not work because of inelastic collisions and the failure of
ergodic hypothesis~see@4# and references therein!. A num-
ber of unique phenomena occuring in granular mater
have been reported; examples are localized states in v
cally vibrated layers@5#, finger patterns in flows@6#, and size
segregation@7,8#. While some authors regard granular med
as an additional state of matter in its own right, others reg
it as a hybrid state of liquid, solid, and gas. A fruitful attitud
has been to consider solid-fluid-like transitions@9–11# or
stagnant solidlike zones in liquid environments@8,12,13#. In
the present work, we shall also consider analogies to fl
and solid phases, including intermediate states.

In order to explore the variety of behavior of particles in
swirled dish, we did computer simulations by using molec
lar dynamics. In the literature, reasonable computer tim
and mechanistic simplifications permit us to consider a nu
ber N of particles up to 104–106. In our work, however, we
shall deal with a very small number of particles: 5<N<54.
Such numbers are attractive for the following reasons:~i!
Mechanistic simplifications at largeN for coping with com-
putational limitations can be avoided;~ii ! there is no need for
assuming a smallerN than in experiments;~iii ! one can ex-
plore the sensitive dependence onN, i.e., significant change
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for DN561; ~iv! one can deal with situations occuring
real biological systems, as, for example, spherical algae c
(4<N<128), swarming and aggregating within a vesic
@14#. For N in this small range, simulations of the followin
systems have been reported:~i! Beads in one dimensiona
~1D! vibrating columns @15#; and ~ii ! disks in two-
dimensional~2D! swirled dishes displaying a transition from
rotation in swirling direction to a ‘‘reptation’’ in the opposit
direction @16#.

II. METHODS

In this work we perform three-dimensional~3D! simula-
tions of N spheres with radiir p55 mm and densityr
52.5 g cm23. A particle i is described by its positionrW i ,
velocity vW i , and angular velocityvW i . The particles are roll-
ing on a cylindrical, horizontal dish~radiusR). We describe
the system by the dimensionless dish coverageb5Nrp

2/R2;
the maximum value ofb is given by the condition that we
only consider setups in which each particle has contact w
the bottom of the dish. The dish is swirled in the horizon
plane such that each point in it has the velocityvW 5
@2Av sin(vt),Av cos(vt),0#; if not stated otherwise, we con
sider A52r p and f 5v/2p52 Hz. Two particlesi and j
only interact if the distance between their center of m
urW i2rW j u is smaller than 2r p , the overlap beingzª2r p2urW i

2rW j u. The repulsive normal forceFW n
( i ) is given by the Hertz

theory with a viscoelastic dissipation@17#,

FW n
( i )5@Yz3/22gnAz~vW i2vW j !nW #nW , ~1!

with nWª(rW i2rW j )/urW i2rW j u. We set the particle stiffness toY
51.03105 kg m21/2s22 and the damping constant togn

530.0 kg m21/2s21. The shear force, perpendicular tonW , is
7182 © 1999 The American Physical Society
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FW s
( i )52

vW s

uvW su
min$msuFW n

( i )u,gsuvW su%. ~2!

The first term describes the Coulomb sliding friction and
second term a viscous friction. The shear velocity isvW s5vW i

2vW j2@(vW i2vW j )nW #nW 1r pnW 3(vW i1vW j ) and the parameters ar
set togs520.0 kg s21 andms50.45. Equations~1! and ~2!
are in good agreement with experimental observations@18#.
The interaction of particlei with the boundaries~bottom and
wall! of the dish were computed by assuming a parti
placed symmetrically toi with respect to this boundary. In
addition the rolling friction is modeled by

FW r5m r

uFn
( i )u

r p

vW 2vW i

uvW 2vW i u
~3!

with m r53.031025 m; gravity is acting along the negativ
z axis. The differential equations are solved by a Ge
predictor-corrector algorithm@19# of sixth order with a time
step of 531025 s. This model with these parameters w
optimized by fitting simulations of probability distributions
rotation frequency, and mean kinetic energy of clusters
spheres in a dish, all as functions ofN, as well as single
sphere trajectories to experiments performed using the s
in Ref. @16#, as will be published elsewhere@20#.

III. RESULTS AND DISCUSSION

The dish is swirled counterclockwise. Therefore and
cause of its inertia the cluster is more or less unrolling at
wall of the dish@16,20#; its center of mass is moving circu
larly in the dish with the same frequency as the exter
driving. We will focus here on the dynamics of the particl
inside the cluster. We obtained three different dynami
modes, which are exemplified in Fig. 1:~a! Confinement of
particles in rings~solidlike mode!; ~b! formation of rings that
exchange particles~transition mode!; and ~c! and ~d! disor-

FIG. 1. Snapshots of dynamical modes taken everyDt510f 21

( f 21: swirling period! for varying particle numbersN and dish cov-
eragesb; the dish is at 3 o’clock of its counterclockwise, horizont
swirling motion ~seen from above!. Some particles are marke
black to visualize their displacements.~a! Shell structure with stable
rings (N521,b50.6). ~b! Transition mode in which particles ar
occasionally exchanged between rings (N521,b50.5). ~c! Disor-
dered mode forN521, b50.45. ~d! Disordered mode forN523,
b50.6.
e

e

r-

f

up

-
e

l

l

dered configurations~fluidlike mode!. Solidification occurs
here @compare Figs. 1~a!, 1~b!, and 1~c!# by increasingb.
This is comparable to the well-known solidification for pa
ticle densities above a critical dilatancy@9,13#. However, we
obtain here the novelty that solidification only occurs at ve
particular values ofN, which we call ‘‘magic numbers.’’ The
ring structure in Fig. 1~a! indicates thatN521 is such a
number, whileN523 @Fig. 1~d!, for which b is the same as
in Fig. 1~a!# is not. In fact, if during calculations we add on
particle in Fig. 1~a!, the rings are rapidly destroyed; if w
take away two particles in Fig. 1~d!, rapid solidification into
stable rings occurs. An overview of ring confinement vers
disorder, for varyingb and N, is given in Fig. 2~a!. The
lower, white region corresponds to disorder, while the upp
dark region corresponds to stable behavior. This dark reg
is connected to dark vertical bars, which are particularly lo
for N57,8,12,14,19,21,30,37,40~‘‘magic numbers’’!. In
Fig. 3 we show the ‘‘frozen’’ ring structures correspondin
to these numbers. Experiments with this setup have alre
been performed and confirmed solidification into these str
tures@21#.

For nonmagicN in the dark region of Fig. 2, solidification
is forced by a lack of space and is not characterized by r
structures. This additional, trivial static mode is to be co
trasted with the three dynamical modes described above.
ordinate of Fig. 2 ends at random loose-packing~RLP! struc-
tures, for whichb5p2/12'0.822@1#. The two curves delim-
iting different shadings in the upper dark region of Fig.
correspond to a RLP structure with a ‘‘hole’’ that could a
comodate one particle~upper curve! or two particles~lower
curve!; these curves can be considered to indicate ‘‘prec
sors’’ of the fluid state and thus help to a qualitative und
standing of the shape of the solidification boundary~dark-
white transition! for nonmagicN.

As shown in Fig. 3, the stable configurations can be cl
sified into four ‘‘types’’: ~I! One-centered hexagonal stru
ture,N511((6i ); ~II ! one-centered ‘‘quasicircular’’ struc

FIG. 2. System behavior depending on the dish coverageb and
the number of particlesN. The white region indicates disorder~flu-
idlike phase! or the transition mode. The dark region above ind
cates the solidlike phase. The particularly long dark columns in
cate the formation of stable rings at the ‘‘magic’’N. Evaluation
time: 40f 21 ( f 21: swirling period!. The upper and lower dashe
straight lines correspond to constant dish radiiR56r p and R
58r p , respectively (r p : particle radius!. The driving amplitudeA
and frequencyf of the swirling motion is varied:~a! A52r p , f
52 Hz, ~b! A54r p , f 51 Hz, and~c! A51r p , f 51 Hz.
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ture, N511((6i 11); ~III ! three particles in the center,N
531((6i 13); and~IV ! four particles in the center,N54
1((6i 14); ~all sums are carried out fromi 51 throughn).
No stable ring structure is found forn>2 in type III ~i.e.,
N527 is not ‘‘magic’’!, for n>3 in type IV and forn>4 in
types I and II. Stable configurations can only persist if t
particles have a vanishing speed relative to each other.
moving wall tends to destroy stable shell structures by ac
erating the particles; the damping of the resulting velocit
is maximized by a large number of contact points betwe
particles. On the other hand, the cylindrical dish and its
cular swirling motion impose circular cluster geometrie
These two conditions — large number of interparticle co
tacts and circular motion — are optimally approximated
the stable shell structures. The sum formulas given above
types I, III, and IV are obtained by starting with one, thre
or four center particles, respectively, and adding further p
ticles in an hexagonal configuration around the center u
the rings are closed. The sum formula for type II is obtain
as for type I, but with a dislocation line passing nearby
center. Note that the actual structures exemplified in Fig
can be understood as resulting from slight perturbations
these geometric constructions, owing to the circular moti
For the four types, an increasing number of subsequent r
leads to increasing edge lengths of the constructed ge
etries and thus to an increasing deviation from the extern
imposed circular geometry; in that case, perturbations of
geometrical structures are so large that the rings are
stroyed.

The scenario along the dashed, straight lines in Fig. 2~a!
can be easily obtained in experiments@21# and occurs at an
increasing number of spheres in the dish, all other parame

FIG. 3. ‘‘Periodic table’’ of stable shell structures. The ordern
~changing horizontally! is the number of rings around the cente
The ‘‘type’’ ~changing vertically! is related to the arrangement o
particles:~I! one-centerd nearly hexagonal;~II ! one-centered ‘‘qua-
sicircular’’; ~III ! three centered, and~IV ! four centered. The
‘‘magic’’ numbers of particles are given in bold type. The dis
coverage isb50.6 for n51 or 2 andb50.63 forn53.
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being kept constant; disorder occurs above and below a
gular value ofN (N521 for the upper straight line andN
540 for the lower one! at which the system ‘‘freezes’’ into
rings. We found the ‘‘magic numbers’’ and their ring stru
tures to be robust to changes of the driving amplitudeA and
frequencyf in the following ranges:r p,A,4r p , 0.5 Hz
, f ,4 Hz @compare, for example, Figs. 2~b! and 2~c! with
Fig. 2~a!#. The upper boundaries of the ranges ofA andf are
given by the fact that the spheres attain enough energ
move above each other for largerA andf. The lower bound-
aries are given by the technical constraint that comput
time limits are surpassed as the system slows down
smallerA and f.

Figure 4 shows a time series of the intermittent position

FIG. 4. Time series of the position of a single particle within t
intermittent transition mode ofN521 particles. We plotted the dis
tance from the center of mass of the cluster~in units of the particle
radiusr p) averaged over one swirling periodf 21 vs the dimension-
less timet851023 ft. The dish coverageb is changed from~a! b
50.51 to~b! b50.44.

FIG. 5. The average time a particle remains in one ring~divided
by the swirling periodf 21) vs the relative distance ofb from bc

(bc : critical value of the dish coverageb at which the stable shel
structure breaks down into the transition mode!. The total number
of particles is~a! N58 and~b! N521.
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a single particle within the cluster as the particle chan
rings in the transition mode@see, e.g., Fig. 1~b!#. In Fig. 4~a!
we see the transient lockings of the particle into each of
three rings forN521, switching between the rings, as we
as disordered, high frequency oscillations within each ri
In Fig. 4~b!, the dish coverageb is farther away from the
critical value bc at which solidification occurs, so tha
switching occurs more frequently. The average timet be-
tween switchings as a function ofub2bcu/bc ~Fig. 5! shows
a dependencet}ub2bcu2g with g53.2560.07, bc50.45
60.02 for N58, andg54.0160.13, bc50.5660.02 for N
521. Since for an exact determination ofbc one would have
to determine the solidification transition fort→`, we deter-
mined bc and g in Fig. 5 by nonlinear optimization. The
well-known scaling exponents for intermittency areg51/2
or 1 @22#. The much larger exponents found here could be
indication of crisis induced intermittency. In fact, it has be
shown that for such an intermittency, higher-dimensio
situations lead to enhanced values ofg; for D-dimensional
maps, (D21)/2<g<(D11)/2 @23#. Such an inequality is
not known for continous systems; however, we do find
decrease forg for decreasing numbers of degrees of fre
dom, as exemplified by the analyses of Fig. 5~a! and 5~b!.
.

da

e

e

A

s

e

.

n

l

a
-

Crisis-induced intermittency in our case would mean t
the fluctuations of the particles within each ring~high-
frequency oscillations in Fig. 4! are described by chaoti
attractors. The crisis would consist of a merging of the
tractors corresponding to neighboring rings, such that b
attractors touch the boundary of their basins~see@23# and
references therein!. In addition, it cannot be excluded tha
chaotic attractors correponding to the motion in the rings
defined on a manifoldM that has a smaller dimension tha
the phase space of the whole system. In that case, switc
may occur via excursions outsideM, as described in Ref
@24#. The intermittency transitions found in this work are
be contrasted with granular fluid–solidlike transitions occ
ing via period-doubling bifurcations as reported in Refs.@15#
and @25#.
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